
What’s in a Word? Refining the Morphotactic Infrastructure in the

LinGO Grammar Matrix Customization System

Michael Wayne Goodman and Emily M. Bender

University of Washington

Seattle, WA, USA

{goodmami,ebender}@uw.edu

1 Introduction

The LinGO Grammar Matrix customization system (Ben-

der et al., 2002, 2010) is a web-based software system

for creating implemented HPSG (Pollard and Sag, 1994)

grammar fragments on the basis of user input of typolog-

ical and lexical information. These fragments are com-

patible with the LKB grammar development environment

(Copestake, 2002) and other DELPH-IN software. The

system consists of a core grammar (types and constraints

hypothesized to be useful across all languages) and a

series of “libraries” of analyses of recurring, but non-

universal, phenomena. Most existing and future Matrix li-

braries involve morphological expression in at least some

languages, so the customization system must provide a

means for users to define lexical rules which attach the

morphemes expressing various linguistic features.

Following O’Hara (2008), we conceptualize this as

problem of morphotactics, separating the ordering and

co-occurrence restrictions of morphemes from both their

syntactic and phonological consequences. This approach

puts the lexical rules and their relationships to each other

as our prime concern.

In this paper, we present refinements to the Grammar

Matrix’s original morphotactic infrastructure (O’Hara,

2008), in order to better meet two constraints: (i) The

system must be able to handle all types of morpheme

co-occurrence restrictions found in the world’s languages;

and (ii) the grammars it produces must be human- as well

as machine-readable, i.e., suitable for extension and main-

tenance by grammar engineers.

2 Background

The grammars derived from the customization system in-

clude analyses of morphotactics (morpheme ordering and

interdependencies) and morphosyntax (the syntactic and

semantic effects of morphemes). As is standard in LKB

(Copestake, 2002) grammars, morphemes are modeled by

non-branching rules which are distinguished from phrase

structure rules in that they are segregated at the bottom of

each parse tree: The daughters of phrase structure rules

may be constituents licensed by other phrase structure

rules, by lexical rules, or by lexical entries directly, but

lexical rules can only take constituents licensed by lexical

entries or other lexical rules as their input.

In using rules to model morphemes, this would appear

on the surface to be an “a-morphous” approach (Ander-

son, 1992), but in fact, each rule has the effect of attaching

one (possibly phonologically empty) affix, and the rules

apply in a particular order, giving words internal structure,

making this in fact a “morphemic” approach. The result-

ing system nonetheless respects lexical integrity (Bresnan

and Mchombo, 1995), in that the inputs (daughters) to

phrase structure rules are fully-formed words.

In Stump’s (2001) terms, the approach is inferential and

incremental. Stump argues for an approach that is in-

stead realizational, on the basis of multiple exponence and

zero realization. Multiple exponence is not problematic

on our account because the syntactic (and semantic) con-

tributions of morphemes are modeled via unification; if

multiple morphemes contribute the same information, the

constraints are simply unified. As for zero realization, we

contend that the formal system must in some way account

1

for all constraints on the distribution of inflected forms. If

there is no overt morpheme associated with some of the

constraints, we contend that a lexical rule with no mor-

phological effect (i.e., a zero-marked rule) is an appropri-

ate mechanism for enforcing such constraints.

3 Room for Improvement

3.1 Current Implementation

In the current morphotactic infrastructure developed by

(O’Hara, 2008), the core Matrix grammar (common to all

grammars produced by the system) only provides a single

boolean feature, INFLECTED, to discern between lexemes

that may be used in phrase structure rules and those that

must undergo further inflection.

In this system, “slots” are an abstract concept akin to

morphological paradigms. A slot defines what lexical

types (or other slots) it may take as input and what con-

straints it puts on other slots. Morphemes are defined

within a slot, with the effect that all morphemes within

a given slot will appear in the same position in a word,

cannot co-occur, and are all either optional or obligatory.

Unlike paradigms, it is not necessary for all morphemes

to affect the same (syntactic or semantic) features, and

morphemes that affect the same features may be in differ-

ent slots if they apply to a different set of lexical types.

The kinds of constraints a slot can place on other slots are

defined in Table 1. Morphemes specify the syntactic fea-

tures and values they affect, if any, and their phonological

contribution, if any.

A forces B If slot A occurs, slot B must also

occur (later)

A requires B Slot A cannot occur unless slot

B has already occurred

A forbids B If slot A occurs, slot B must not

occur (before or after)

Table 1: Co-occurrence restrictions for O’Hara’s morpho-

tactic system.

Based on the information the user provides, the cus-

tomization system will decide which basic rule types (as

defined in the Matrix core) should be used in the defi-

nitions of the custom lexical rules. O’Hara’s system also

introduces the notion of a TRACK features, or flags, which

keep track of the application of specific rules and are used

for long-distance restrictions on slot co-occurrence. Fur-

ther, the lexical rules created by this system will set IN-

FLECTED to + only when the last necessary rule has ap-

plied (necessity being obligatory slots or slots forced by a

previous rule).

3.2 Stem versus Word Distinction

While the simplicity of having one feature, INFLECTED,

define whether a lex-item can be used in a phrase is

appealing, it is the reason for one major drawback of

O’Hara’s system.

Figures 1–3 show three morphotactic systems, each

(ideally) with 3 slots varying in the obligatoriness of

slots and the co-occurrence restrictions they place on

each other. Only the first system works as intended, and

the other two result in inelegant redundancies (i.e. addi-

tional slots differing only in the value they place on IN-

FLECTED), complicating the task of hand-editing lexical

rules later.

3.3 Constraints on Lexical Types

Another context in which the current system leads to re-

dundancy is when certain slots are optional for some lex-

ical types but obligatory for others. In order to model

this, one would need to provide duplicate slots that define

the same morphemes, features, etc., but with one being

optional and the other obligatory, and taking different in-

puts.

4 Proposed System

In light of the deficiencies of the current system, we pro-

pose changes to both the Matrix core as well as the cus-

tomization logic.

4.1 Extending INFLECTED

The core of our new proposal is to change the value

of INFLECTED from a single boolean flag to a complex

AVM containing multiple ternary flags.1 Each of these

flags is defined in the language-specific grammar files. In

essence, we are merging TRACK into INFLECTED.

Moving from a boolean value to a complex value for the

feature INFLECTED also allows us to simplify the inven-

tory of lexical rules types in the Matrix core. In particular,

there is no longer any need to cross-classify these types

1Three leaf-types on a type hierarchy, so more than three values are

possible. See Figure 5.

2

Slot 1

 Optional

 Forces slot 2

Slot 2

 Optional

Slot 3

 Obligatory

 [INFLECTED +]

LexItem

Figure 1: Forcing a slot before an obligatory slot.

Slot 1
 Obligatory

 [INFLECTED +]

Slot 2
 Optional

 Forces slot 3.1
 [INFLECTED -]

Slot 3.2
 Optional

Slot 3.1
 Optional

 [INFLECTED +]
LexItem

Slot 1

 Optional

 Forces slot 3.1
Slot 2.1

 Obligatory

Slot 2.2

 Obligatory

 [INFLECTED +]

Slot 3.2

 Optional

Slot 3.1

 Optional

 [INFLECTED +]

LexItem

Figure 2: Forcing a slot after an obligatory slot Figure 3: Forcing a slot around an obligatory slot

along the dimension of lexeme-to-word-rule vs. lexeme-

to-lexeme-rule.2

The new system defines the value of INFLECTED

in the Matrix core as in Figure 4. The flags that

appear on these structures are then defined in the

language-specific grammar files, and the set will be

identical for each of inflected, infl-initial,

and infl-satisfied. All lex-items start with the

infl-initial configuration, and phrase structure

rules, rather than checking for [INFLECTED +], now check

for [INFLECTED infl-satisfied].

[INFLECTED inflected].

inflected := avm.

infl-initial := inflected.

infl-satisfied := inflected.

Figure 4: The new definition of INFLECTED

The values of the flags come from the luk hierarchy

in the Matrix core, as shown in Figure 5.3 We use the

following interpretation for the values: + means the lexi-

cal rule has been applied, - means the lexical rule has not

applied and must apply before the lex-item can be used

in a phrase, and na means the lexical rule has not ap-

plied but does not need to apply. Using these values, we

can simplify, and extend, the logic for morphotactic slots.

2These might be more properly named stem-to-word-rule and stem-

to-stem-rule.
3In using this generalization of the notion of boolean features we

follow the English Resource Grammar (Flickinger, 2000).

We note that the optional versus obligatory distinction is

equivalent to saying that any obligatory slot is just forced

by the lexical types it takes as input. Therefore, by allow-

ing users to specify co-occurrence restrictions on lexical

types and by removing the dimension of slot optionality,

we simplify the system and create additional functionality

by allowing lexical types to individually specify the slots

they require.

 na-or-+

 + na

 na-or--

 -

 bool

 luk

Figure 5: The luk hierarchy.

4.2 Co-occurrence Restrictions

We can now redefine how the three co-occurrence restric-

tions are implemented. First, we set infl-initial so

all flags are na, and all flags in infl-satisfied are

na-or-+. Rules that don’t explicitly change the value of

a flag are instead set to copy it up from daughter to mother.

The logic of the co-occurrence restrictions is shown in Ta-

ble 4.2.

4.3 Disjunctive Slots

The new flag system allows us to easily make disjunc-

tive requirements; a lex-type can specify that either slot A

or slot B is necessary before the lex-type can be a word.

3

Restriction Rule Definition

A forces B A-rule: [INFLECTED.B -]

B-rule: [INFLECTED.B +]

B requires A A-rule: [INFLECTED.A +]

B-rule: [DTR.INFLECTED.A +]

A forbids B A-rule: [INFLECTED.A +]

B-rule: [DTR.INFLECTED.A na]

We do this by creating one flag for both slots, and when

one occurs the flag is satisfied, and nothing changes if

the other rule also occurs. If neither of the rules occur,

the flag is left unsatisfied, and the lex-item’s INFLECTED

value will not unify with infl-satisfied.

We can create disjunctive requirements in two ways:

explicitly or implicitly. An explicit disjunction is speci-

fied by the user and allows for alternations in sequential

slots, while an implicit disjunction is calculated by the

system based on the slots’ structure. Since explicit dis-

junctions are specified on single slots, a pattern such as

“(A and B) or (C and D)” cannot be modeled with an ex-

plicit disjunction, but it can be modeled with an implicit

disjunction. Figure 6 illustrates this case.

Slot 1.1
[1.1-or-1.2-flag +]

Slot 2.1
[2.1-or-2.2-flag +]

Slot 1.2
[1.1-or-1.2-flag +]

Slot 2.2
[2.1-or-2.2-flag +]

LexItem
[1.1-or-1.2-flag -
2.1-or-2.2-flag -]

Figure 6: An implicit disjunction

We have designed the system to create the minimum

number of flags to model these kinds of systems. While

we could have a series of three flags, such as {[1.1-or-1.2],

[1.1-or-2.2], [1.2-or-2.1]}, we only create the minimal set

{[1.1-or-1.2], [2.1-or-2.1]}.4

5 Test Cases

While possibly all of the morphotactic systems we want

to create could have been done under the old system, the

result would sometimes be a complex set of rules with

many duplicated features. The new system promises to

solve these problems in a much more straightforward way,

leading to greater elegance in analyses and less of a bur-

den on the grammar developer.

4Here, the flag names show the slots they are satisfied by. Thus,

[1.1-or-1.2] would be satisfied if either slot 1.1 or slot 1.2 occur.

5.1 French Pronominal Affixes

In French [fra], strict transitive verbs such as prendre

(‘take’) require either object clitic (analyzed as a prefix,

following Miller and Sag (1997)) or a full NP object,

while optionally transitive verbs such as manger (‘eat’)

can take the clitic, a full NP object, or no object at all:5

(1) Je

I

mange

eat.1SG

(le

(the

biscuit)/Je

cookie)/I

le-mange

3SG.M-eat1SG

‘I eat the cookie/it/φ.’ [fra]

(2) Je

I

prends

take.1SG

*(le

*(the

biscuit)/Je

cookie)/I

le-prends

3SG.M-eat1SG

‘I take the cookie/it/*φ.’ [fra]

The argument optionality library in the Grammar Ma-

trix (Saleem, forthcoming) handles such alternations via

lexical rules. For a verb like prendre, there is an obliga-

tory slot which houses the object prefix rules as well as a

zero-marked rule which constrains the object to be incom-

patible with the object-drop phrase structure rule. A verb

like manger, however, should not go through this rule.

Rather, it should simply optionally take the object pre-

fixes. On the old system, this required duplicating slots.

On the new system, however, it can be elegantly handled

by placing a forbids restriction on the lexical type for

manger so it cannot take the zero-marked rule and a re-

quires restriction on prendre so that it must either take an

object prefix or the zero-marked rule.

5.2 Lushootseed Tense and Aspect Markers

Lushootseed [lut] is an agglutinative Coast Salish lan-

guage. It has morphemes for tense and for aspect, with

the requirement that at least one of them (tense or aspect)

must occur, or both may occur (Hess, 1967). (3) is an ex-

ample of a sentence with both tense and aspect specified.

With the old system, this disjunctive relationship would

require complex arrangements, and much duplication of

slots, but with the new system we can model it more ele-

gantly.

(3) Lulexwil

Lu-le-xwil

FUT-PRG-get.lost

ti

t-i

det.DEF-DIR

cacas

cacas

child

‘The child will become lost.’ [lut]

5We assume for the sake of the example that there is only one lexical

entry for manger.

4

We would first create the slots and set their inputs as

needed to capture the affix ordering correctly, then we

would add a disjunctive forces restriction on all lexi-

cal types that require a tense or aspect marker, with the

forcees being the tense and aspect slots. The system will

create one flag for these two slots, and when one slot oc-

curs the flag is satisfied. If both occur, the value of the

flag is still satisfied, but if neither occur it will be left un-

satisfied, disallowing it from being used in phrasal rules.

Note that the Lushootseed case differs from that depicted

in Figure 6, in that the disjunctively forced slots are on

the same inflection path, allowing them to co-occur.

6 Conclusion and Future Work

We have proposed a new morphotactic system that al-

lows for simple analyses of a wider range of patterns

than the previous system. The primary innovation in

our proposal is in generalizing the distinction between

stems and words from a simple binary one to a more

nuanced notion of words as inflectionally satisfied. The

HPSG notion of types allows us to make this gener-

alization while maintaining a simple constraint on the

daughters of phrase structure rules, namely, that they be

[INFLECTED infl-satisfied].

The benefit of the proposed system is immediately

obvious for a context like the LinGO Grammar Matrix

customization system, where robustness across many ty-

pologically diverse languages is necessary, but it may

also prove useful for individual hand-built grammars—

particularly agglutinating or polysynthetic languages

where there may be complex dependencies among the

morphemes.

In future work, we would like to consider techniques

for simplifying the rule sets output by the system with

the goal of further enhancing their maintainability when

grammar engineers extend these grammars. We plan to

explore graph-based methods for simplifying the morpho-

tactic system. For instance, we would like to find and

remove unused edges (i.e. inputs to rules), or use a clev-

erly restricted set of edges rather than an overabundance

of flags.

References

Stephen R. Anderson. 1992. A-morphous Morphology. Cam-

bridge University Press.

Emily M. Bender, Scott Drellishak, Antske Fokkens,

Michael Wayne Goodman, Daniel P. Mills, Laurie Poulson,

and Safiyyah Saleem. 2010. Grammar prototyping and test-

ing with the LinGO Grammar Matrix customization system.

In Proceedings of ACL 2010 Software Demonstrations.

Emily M. Bender, Dan Flickinger, and Stephan Oepen. 2002.

The grammar matrix: An open-source starter-kit for the

rapid development of cross-linguistically consistent broad-

coverage precision grammars. In Proceedings of the Work-

shop on Grammar Engineering and Evaluation at COLING

2002, pages 8–14.

Joan Bresnan and Sam A. Mchombo. 1995. The lexical integrity

principle: Evidence from Bantu. Natural Language & Lin-

guistic Theory, 13(2):181–254.

Ann Copestake. 2002. Implementing Typed Feature Structure

Grammars. CSLI Publications, Stanford, CA.

Dan Flickinger. 2000. On building a more efficient grammar

by exploiting types. Natural Language Engineering, 6 (1)

(Special Issue on Efficient Processing with HPSG):15 – 28.

T.M. Hess. 1967. Snohomish grammatical structure. Ph.D. the-

sis, University of Washington.

Philip H. Miller and Ivan A. Sag. 1997. French clitic movment

without clitics or movement. Natural Language and Linguis-

tic Theory, 15:573–639.

Kelly O’Hara. 2008. A Morphotactic Infrastructure for a Gram-

mar Customization System. Master’s thesis, University of

Washington.

Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase Struc-

ture Grammar. The University of Chicago Press, Chicago.

Safiyyah Saleem. forthcoming. Argument Optionality: A New

Library for the Grammar Matrix Customization System. Mas-

ter’s thesis, University of Washington.

Gregory T. Stump. 2001. Inflectional morphology: A theory of

paradigm structure. Cambridge Univ Press.

5

